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Abstract—This paper is concerned with the axisymmetric thermal analysis of a contact on a semi-infinite

single layer which is perfectly attached to a half-space. The Hankel integral transform method is employed

and convective boundary conditions are imposed on the contact surface. In each case suitable Fourier

expansions reduce the problem to the solution of integro-differential equations similar to those studied in

Part 1 for half-space contacts. Compact expressions are developed and the variation of thermal constriction

resistance is shown in non-dimensional form for a wide range of Biot numbers, layer thickness and thermai
conductivity ratios.
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1. INTRODUCTION

IN PART 1 of this work, the authors examined the
variation of thermal constriction resistance for cir-
cular contacts on a half-space, with convective
(Robin) boundary conditions. If we attach a finite
thickness layer to this half-space model, we obtain
a coated surface, which may be used for enhancing
thermal contact conductance. This was studied ex-
perimentally in refs. [1, 2], with applications in the
microelectronics industry.

Analytical studies were conducted in ref. [3] using
Hankel transform theory, however, these were restric-
ted to isoftux and approximately isothermal contacts,
both problems having an insulated external boundary.
In particular, Negus ez al. [3] did not solve the actual
mixed boundary-value problem but used a linear
superposition of known flux distributions to cir-
cumvent mathematical difficulties.

The aim of this work is to examine the thermal
behaviour of layered half-space contacts with mixed
convective boundary conditions. The integral Hankel
transform approach will be used as outlined in Part
1. The thermal constriction resistance [4] of these con-
tacts is shown to vary with a dimensionless reference
Biot number, as well as a wide range of layer thickness
and conductivity ratios. In all cases studied, suitable
Fourier expansions permit efficient and accurate solu-
tions of the resulting integro-differential equations, in
a likewise manner that was studied in Part 1.

2. PROBLEM STATEMENT

From Fig. 1, we note that the two temperature fields
in regions 1 (layer) and 2 (substrate) are joined at
{ = o, where, for perfect contact, the boundary con-
ditions are

&:0 or ;=0
a¢

86,

_S T Hy(p)0:1 = —H1(p)&s

ky r=a | s (»)
Ve, =0 =1
kz
V’Gz =0
§=t/a
p=r/a
¢ =z/a
* K=k /k;
6,=9, 2
a0 80
k.;;‘ = ”43—: ()
FiG. 1. Coated half-space model.
0,=0, 4y
00, 00,
—_— = 2

The term x is the thermal conductivity ratio of the
two materials defined by k = k, /k,.

The temperature fields in the layer and substrate
will be denoted by the non-dimensional Hankel forms

O (p,0) = H [ {A(E) exp(—&0)
+B(E)exp (&N}l (3)
0,(p.0) = HolE™'D(E)exp(—ED); p].  (A)

Thus, from boundary conditions (1) and (2), we can
obtain

A(Z) = BD(S) (5)
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NOMENCLATURE
a contact radius dimension r radial coordinate
a, Fourier series expansion coefficient and rn layer influence matrix entries
solution vector R influence matrix for layer problems
A standard system matrix R, thermal constriction resistance
A(¢) Hankel transformed temperature t thickness of layer in positive z-direction
function T,T, domain temperature, reference
b, Fourier series expansion coefficient temperature
B coefficient matrix in external convection U Heaviside unit step function
problems w Legendre polynomial argument, 2p%—1
B(&)  layer transformed temperature function x Fourier transformed coordinate
¢ non-uniform flux and convection z depth coordinate.
distribution parameter
¢, Fourier series expansion coefficient Greek symbols
C(¢) Hankel layer transformed temperature o thermal conductivity parameter,
function (1—x)/(14+x)
d non-uniform flux and convection B thermal conductivity parameter,
distribution parameter (1+x)/2k
dy, Legendre series expansion coefficient B. Fourier series expansion coefficient
D symmetric coefficient matrix ¥ parameter in Lipschitz—Hankel
D(&)  layertransformed temperature function integrals
e, Legendre series expansion coeflicient o relative thickness, t/a
E(1)  complete elliptic integral of the second Ono delta function, equals unity only for
kind n=20
f(x)  Fourier transform function € modulus parameter in theta-functions
fm+n  Fourier series coefficient { dimensionless depth coordinate, z/a
F symmetric coefficient matrix 0,0,0,,0, temperature excess, mean
F(p)  external integral equation function of p contact temperature excess, specified
Gn Legendre series expansion coefficient base and contact temperature
and vector excesses
G(p)  external integral equation function of p 0®,,0, layer temperature, substrate
h,hi, h, convection coefficients temperature
h,., Fourier series coefficient 0 angular coordinate
H,H, H, dimensionless Biot numbers, K conductivity ratio, k, /k,
halk A modulus for elliptic integrals
1 identity matrix u,v general integers
j(x)  Fourier transform function ¢ transformed radial coordinate
k,kqi,k, thermal conductivity, layer and T constant, 3.14159265. ..
substrate conductivities p dimensionless radial coordinate, r/a
K())  complete elliptic integral of the first ¢ angular coordinate
kind Y, dimensionless constriction factor,
K’(1) complementary complete elliptic dak,R..
integral of the first kind
m,n integer constants Other symbols
ny truncation value of system of equations &/, o, Abel integral operator transforms
N diagonal coefficient matrix 0 partial derivative operation
P, Legendre polynomial of degree n F ., %, Fourier cosine and sine transform
q(p),q0(p),q, heat flux functions, uniform operators
heat flux W, Hankel transform of order v
Q,0* total heat flux through contact, total \% Laplacian operator in cylindrical polar
flux, Q/ak coordinates.
B(&) = —afiexp (—268)D(&) (6) Similarly as in Part 1, we will define the thermal
constriction resistance of the circular contact on the
where
layered half-space to be
1—x 1+x 0,
r=iTe F=3 ) R.=-5 ®)
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where the mean contact temperature rise ®,,, and
total heat flux over the contact, @, are defined in
dimensional and non-dimensional coordinates as

1 a
0, = ;I?J; ©,(r,0)2ardr C)
= ZL ©,(p,0)pdp (10
_ “00,(r,0)
Q= —J; Tandr 1)
1

= —anlaf Mpdp. (12)

b

Again we will present results in terms of the dimen-
sionless thermal constriction resistance factor

¥, = 4ak,R.. (13)

We will consider two general problem types with
mixed convective boundary conditions.

Case (A) : contact conductance on the internal (p < 1)
region with external (p > 1) insulation

00
a—c—Hl(P)®= —H,(0)8,, p<1 (14
00

Case (B) : contact conductance on the internal (p < 1)
region with external (p > 1) T = 0 condition

“6‘6—) - Hl(P)® = “HI(P)Qb,

3 (16)

p<l1

=0 p>L. an

Using forms (3)—(6), we will be able to solve the mixed
surface boundary conditions in terms of having only
one unknown transformed temperature, D(¢), in the
integral solution. The Hankel transforms used are as
outlined in Part 1 of this paper. Additionally we will
be concerned here with the layer ratios é and «.

3. LIMITING CASES

Limiting solutions will also be required here to
verify the upper and lower bounds for the convective
boundary conditions in equations (14)—(17). These
are similar to the forms given in Part 1, except that
they will require the necessary approximations to the
integral equations, and thus are generally more
involved than the half-space models only. Three cases
are discussed here, not including varying-flux
contacts, which could be similarly developed as was
done for the half-space in Part 1.

Case (i)

%,

ac = —{qo, p<1

(18)

HMT 31:9-1
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00,

— = . 1
P 0, p>1 (19
Surface conditions are ummixed, and therefore the
solution procedure is straightforward, that is

Ji($)

:
Using equations (5) and (6), and incorporating the
binomial theorem to convert the quotient into a con-

vergent series, after some manipulation we may show
that

B(S)—A() = ¢

(20)

(&)

AQ)+B(S) = 4o 7

x [1+2 i (—1)“a“exp(—-2u6£):| 1))

p=1

and hence write

OOJI
©,(0.0) = 4o [ J %Jo(ép) de

© 0 o= ¢

+2 ) (—1)“06“£ C Ji(&)Jo(Cp) dé]- (22)
u=1

The mean contact temperature ©, and total heat flux

Q are now easily evaluated, and we may obtain the

dimensionless constriction factor based on the ther-

mal conductivity k, of the layer

2 162 = g~ 20k
= 4 - — 1)Hyk
lIlc 37[2 + n ugl( 1) a J‘; 62

Jide.
23)

This result was also obtained by Negus et al. [3], who
approximated the infinite integral for a specified range
ud = 0.5, but evaluated it numerically for ué < 0.5.
Fortunately, we note that this is a Lipschitz—Hankel
type integral, which may be explicitly reduced solely
in terms of complete elliptic integrals, as discussed by
ref. [5]. A summary of these is given in ref. [6], and
we may obtain

32 162 4
—_ — " 2y 1/2
W=z + Y (~Dre [~3n<1+<u6) )

p=1

X {(ﬂ5)2(K(/1)—E(/1))+E(/1)}—u5] 24

where the modulus 4, is defined as

A= (1+@d)>)~ 2. (25)
Case (ii)
00
—aC—'= ~qo, p<1 (26)
®, =0 p>1 27

Using equations (5) and (6), and letting
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(&) = D)1 —ae~) 28)
our Hankel-form boundary conditions become
HdGOIC@: A= p<1 @9
Ho[E'C(&);01=0, p>1. (30)
The term G(&) is defined by
6 -1 Gy
=1+2 i P (32)
=1+ gZ«ET). (33)

Due to condition (30), we may employ the Abel
integral operator &/ ' to obtain

F[CQ); xl = ) f()Ux-1). (34
As in Part 1, we next use two simultaneous Fourier

expansions for the unknown variable f(x)

f(x) = F@O) =

n

o

a,cos(2n+1)0, 0<0<n/2
=0
(35)

sin6F(@) = Y, b,cos(2n+1)8, 0<f<mn/2 (36)
n=40

and the representations x = cosf, p = cos¢. Now

with these expansions, we can note that

@) = Jl S (x)sinéxdx (37
0

/2

w0
= Z an
n=0 0

cos (2n+1)0sin (Ecos ) sinfdO  (38)

=3 b= 1O (39)
The method now follows similar lines as described for
the half-space analysis, that is, to reduce the system
to a single integro-differential equation. We choose
the Fourier sine transform of the g(£)C(&) function
in this case to be represented by

1/2 «©
F9(O)C(&); x] = (g) Zo c,cos(2n+1)0  (40)
n 1/2.
= (5) J (). 41)

The ¢, are now related to the b, (for easiest analytical
manipulation), by

cn = Z rm,nbm (42)
m=0
where, we can show that

2 o
Fnn = (=1 j GY G
0

x Ln sin ({cos @) cos 2n+ D dpdé  (43)
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=4(=1"tn Y o
p=1

XJ. e % T 1) os 1 (§) dE. (44)

0
After further manipulation with equation (29), we
may obtain the infinite system of linear equations, in
matrix form

{71+ [RI[DL}a, = g, (45)
where now, the right-hand side vector becomes
2
g0=ﬁq0, g, =0n=12,... (46)

Now, with the form of equation (39), we note that
with equation (28), the temperature solution on the
top surface becomes

0,(p,0) = B o[£ 'C(); p] (47)

=283 (-1 f Tane () To(Ep) A&

(48)

After further integrations, for a uniform flux g, we
may obtain

Bbo

T
@10 = Eﬂbo, ch = Z-q: (49)

Results for this case are given in Tables 1 and 2.

Table 1. Isofiux contact with T = 0 external;

o<1
Conductivity  Thickness Constriction
ratio, ratio, factor,

x =k, /k, 8 =tla Y. = 4ak,R,
0.01 0.01 2.0452x 1072
0.10 0.01 7.4119x 1072
0.50 0.01 2.8797x 107!
0.75 0.01 4.1574x 10!
1.25 0.01 6.6225x 107!
2.00 0.01 1.0132x10°

10.00 0.01 3.8699 x 10°
100.00 0.01 1.2122 x 10!
0.01 0.10 1.2471 x 107!
0.10 0.10 1.8277x 107!
0.50 0.10 3.6852x 107!
0.75 0.10 4.6028 x 10!
1.25 0.10 6.1132x 107!
2.00 0.10 7.8389x 107!
10.00 0.10 1.4322 x 10°
100.00 0.10 1.8300 x 10°
0.01 0.50 3.9713x 107!
0.10 0.50 4.2417x 107!
0.50 0.50 4.9453x 10!
0.75 0.50 5.2081 x 10~!
1.25 0.50 5.5558 x 107!
2.00 0.50 5.8608 x 10—t
10.00 0.50 6.5381 x 10!
100.00 0.50 6.7702 x 107!
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Table 2. Isoflux contact with T = 0 external;

éz1
Conductivity Relative Constriction
ratio, thickness, factor,

K =k, fk, é=tla ¥, = dak R,
0.01 1.00 4.9863x 10!
0.10 1.00 5.0702x 10~}
0.50 1.00 5.2785x 10~}
0.75 1.00 5.3513x 107!
1.25 1.00 5.4435x 107!
2.00 1.00 5.5205%x 107!

10.00 1.00 5.6794x 107!
100.00 1.00 5.7303 x 107!
0.01 2.00 5.3304x 107!
0.10 2.00 5.3452x 107!
0.50 2.00 5.3820x 107!
0.75 2.00 5.3947x 107!
1.25 2.00 5.4106 x 107!
2.00 2.00 5.4238x 107!
10.00 2.00 5.4505x 10!
100.00 2.00 5.4590 % 10!
0.01 10.00 5.4031 x 10~!
0.10 10.00 5.4033x 107!
0.50 10.00 5.4036x 107!
0.75 10.00 5.4037 x 107!
1.25 10.00 5.4039x 10!
2.00 10.00 5.4040x 107!
10.00 10.00 5.4042x 107!
100.00 10.00 5.4043x 107!
0.01 100.00 5.4038 x 10~!
100.00 100.00 5.4038 x 10~!
Case (iii)
0,=0, p<l (50)
00,
Pl 0, p>1. €2))
By defining here
C©) = D)1 +ae™ ) (52)

then in Hankel form, equations (50) and (51) become

C)
HoTIGOCR; =7 p<l (53
Ho[C(C);p) =0, p>1. (59
The G(£) is in this case given by
1—ae 2

G(¢) = TFae % (55)
=142 i (=)ot e~ w8 (56)
= 1+g(&). (57)

This time, we employ the representation
FJ4Q) ;X1 = (@) f (U1 -x)  (58)

where U is the Heaviside unit function, defined by
Ul—x)=1, x<1
=0, x>1 (59)

and the expansions
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F6)=FO) = 3 aysin@n+1)f, 0<6<n2
n=0
(60)
Sin0F@) = ¥ b,sin2n+ 18, 0<6<n/2.
n=0
(61)

With these simultaneous Fourier expansions for f(x),
we may show that

cO=3 > a,(2n+1)(—1)nf_2nt§'(ﬁ ©2)
a\?
o)A = (5) 5. a,@ntn(-1y
X Lw{b_?@y(f)cosfxdf (63)
T 1/2 )
= (5) Jj). .

Now, with x =cosf, as before, we use the rep-
resentation

sin@J(0) = Y. c,sin (2n+1)0

n=0

(65)

and then the integro-differential equation will reduce
to the system of equations

byt = g (66)

The b, are related to the a, by the d,,,, in the Appendix
(Part 1), and the ¢, are related to the a, by the sym-
metric r,, , given by

2 ® J +1
Fn = = @m+ (= 1)" j g(c)—z’"é—@

x J‘n cos (Ecos@)sin(2n+1)¢psingpdepdé  (67)

= 42m+1)2n+1)(- 1)™*" f (= 1)

K=

w0 o 2t
x L _Ez_JZm+ 11 (E)dE. (68)
The matrix system hence becomes
{[D1+[Rl}a=g (69)

and the g, are as defined for Case (ii) by replacing g,
with ®,. To evaluate the heat flux, we note that

00

T —BHo[C(&); pl (70)

= —8 § aCa+ (-1 f Tns 1O Jo(Ep) 2.

)
To find Q, we use equation (12), and thus obtain
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2

0= "7 paka,, ¥, = %. (72)
Again we included the effects of the thermal con-
ductivity ratio x into constants « and . We note from
equation (7), that o — 1 as x becomes very small.
In terms of material conductivities, as the substrate
conductivity k, becomes very large compared to the
layer conductivity k,, the substrate behaves like a
thermal sink, with ® =0 on { = 4.

Negus et al. [3] approximated condition (50) by
superposition of two flux distributions ; the uniform
flux in Case (1), and an equivalent isothermal flux, that
is, the flux resulting from an isothermal contact on a
half-space (Part 1), the solution of which is straight-
forward. Comparison is made, between the exact solu-
tion to the mixed boundary value problem derived
here and the solution from ref. 3], in Table 3.

4. CONTACT CONDUCTANCE, CASE (A)

The boundary conditions for this problem are as
stated in equations (14) and (15), and with the forms
defined in equations (3) and (4), we may write our
Hankel-form boundary conditions as

Ho[CE); P14 H (p)H o[E ' G(E)C(E); p]
(O]
=—H1(p)7", p<1 (73)

Ho[C(E);pl =0, p> 1. (74)

In the above, C(¢) is defined by equation (52) and
G(¢&) is given by equation (55). Next, we use equation
(58) to reduce to a single integro-differential equation
along with expansions (60) and (61). Now with

GO=2F (~lywe ™ (15

then we have for p < 1

Ho[C(E) ;5 p)+H (p)H o[£ C(); p]

o,

+H(p)#[¢9(E)C(E); pl = —Hi(p) B (76)

The function C(£) may be given by equation (62), and
thus, with the forms of equations (63)—(65) we can
obtain similarly a system of equations, for uniform
H,

a,+H,2n+1)"(b,+c,) = g, an
and in matrix notation

{11+ H,[N)(D]+[RD}a, = g,. (78)
The ¢, are related to the a, through equation (42) by
the r,,, given by equation (68). The b, are related to

the a, as in equation (66), and the g, are simply given
by

Table 3. Isothermal contact with external insulation ; verifications

Percentage
¥ /4 v /4 difference

8 =tla K=k, lk, Negus et al. [3] equation (75) (%)
0.01 0.01 5.830x107? 5.821x 103 —0.15
0.01 0.10 2.875%x 1072 2.893x 1072 0.62
0.01 0.50 1.279x 107! 1.284 x 10! 0.37
0.01 2.00 4.893x 107! 4.873x 107! —0.41
0.01 10.00 2.220x 10° 2.179x 10° —1.90
0.01 100.00 1.346 x 10" 1.161 x 10 —15.90
0.10 0.01 3.206 x 1072 3.180x 1072 —0.83
0.:0 0.10 5.436x 1072 5.422x 1072 —0.26
0.10 0.50 1.463 x 107! 1.465x 107! 0.10
0.10 2.00 4327 x 107! 4.323x 107" -0.09
0.10 10.00 1.368 x 10° 1.361 x 10° —-0.05
0.10 100.00 4.109 x 10° 4.095 x 10° —0.36
1.00 0.01 1.581 x 107! 1.587x 10! 0.36
1.00 0.10 1.692 x 107! 1.698 x 10! 0.34
1.00 0.50 2.105x 107" 2.112x 107! 0.31
1.00 2.00 3.076x 107! 3.085x 107! 0.29
1.00 10.00 5.021x 107! 5.032x107! 0.22
1.00 100.00 8.497x 107! 8.510x 107! 0.16
10.00 0.01 2.392x 10! 2421 x 107! 1.20
10.00 0.10 2.405x107! 2.435%x 107! 1.22
10.00 0.50 2.454x 107" 2.484 x 107! 1.20
10.00 2.00 2.564x 107! 2.594x 10! 1.16
10.00 10.00 2771 x 107! 2.801 x 107" 1.06
10.00 100.00 3.123x 107! 3.154x 107! 0.97
100.00 0.01 2.489 x 10! 2.519x 107! 1.18
100.00 100.00 2.562x 107! 2.592x 10! 1.16
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gn=0,n=12... )

_2H1®b
90'-1r

ﬁ 2
If we had a non-uniform symmetric contact con-

ductance as defined in equation (36) of Part 1, then
in a similar manner, our matrix system would become

{m +H, (§ + d) [NIAD]+[RD

+H, g[N][G]([D'H[R’])}a ~g. (80)

The [D’] and [R’] are again rectangularized versions
of [D] and [R] as discussed in Part 1. The g, in this
case would be as given in Part 1, and dividing each by
the factor . For either a uniform or non-uniform
contact conductance, evaluation of the mean contact
temperature and total heat flux remains the same.
Thus we proceed

B(p,0) = Bt o[~ ' G(E)CE); o]
= B{H# o[ C(&); p]
+#o[$7 9 OCE); P} (82)

81

We note that we may also represent C(£) in terms of
b, by

C(&) = i b, j " sin (214 1)8cos (£cos §) dd
(83)

and thus

Ho[E1C(E); pl = ibnj; Jo(Ep)

/2
X J. sin (2n+ 1)6cos (Ecos Gy dadé.  (84)

[4

To evaluate ®, this form is easily reducible, and thus

8= 8350 +3 5 41 @msn@nt

— 2688

x 3 (- 1o J "?Jml(m(f:)dé] (®5)

6.="" [bo + ¥ anr,,,o] (86)
n=0

where r, o are the first row entries of equation (68) in
matrix [R], which are evaluated beforehand. The total
heat flux Q will again be given by equation (12), and
thus we obtain the simple forms

1879

2 b
0= %—akﬂao, P, = %[ ot E‘oa"'""’J. 87

ay
We note that when the contact conductance 1s
uniform, then as in Part 1, we can express the solution
for the mean contact temperature in terms of the much
simpler expression for the total heat flux, equation
(87). Thus we note from Part 1, for uniform contact
conductance only

0* ., 8. 4(20, 1
H ¥e=4

®lc = ®b -

where O* = Q/ak.

5. CONTACT CONDUCTANCE, CASE (B)

Boundary conditions (16) and (17), may be cast in
Hankel form as

H H[GECQ) 5 pl+H,(p)H o[£~ C(E); p]
9,
_g"»
HoET'CE);p1=0, p>1 (90)

where C(£) is denoted by equation (28), and G(¢) by
equation (31). We next choose representation (34)
and expansions (35) and (36), and analogously we find
our system of equations, for a uniform conductance
coefficient, to be

{IN+[RI[D]+H,[N][Dl}a, = g,.

The 4, ., 7., €ntries are respectively given by equation
(49) of Part 1, and (43), and the g, by equation (79).
For a non-uniform symmetric conductance coefficient
of a form similar to equation (36) of Part 1, the system
of equations we obtain are

=—H(p) p<1 (89

on

{m +[RIDI+H, (§ + d) [V1(D}

+H, ;ﬁ_—[N}[G][D']}an TG

The entries of [G] are again as defined for equation
(80) (see also Part 1), with [D’] again being the rectan-
gularized version of [D], and the g, would again be
given as in the previous section. For either a uniform
or non-uniform contact conductance, we obtain for
the mean contact temperature and total heat flux

5 n? <
0, = 'iﬁbo, Q= “'2“5ak [“o +2 bn’nvo]' ©3)
n=0

Again, the r,, are the first row entries defined by
equation (43). Thus, our expression for the dimen-
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ki/ k2
1.2
2.0
10
100

[

1.0 ———

CONSTRICTION FACTOR = 4akR

BIOT NUMBER = ha/k

FiG. 2. Constriction factor vs Biot number; k¥ > 1, & = 1.0 external insulated boundary.

sionless constriction factor becomes after some
manipulation
by
—_— .
¥4
ay + Z bnr n0
n=0

| 4~

Y. 94)

Again, for a uniform contact conductance, we may use
the form of equation (88) for simplification, and thus
obtain

O, _ 2pb,

¢ Hl(eb— gﬁbo)

6. PRESENTATION OF RESULTS

¥, 93

An explicit expression (24), was derived for Case
(i), overcoming the previous resort [3] to numerical

integration. Tables 1 and 2 provide the variation of
constriction factor with relative thickness and con-
ductivity ratios, for an isoflux contact with 7’=0
external boundary. Thus, along with the results shown
in ref. [3], these respectively determine the upper and
lower bounds for an isoflux contact with external con-
vection boundary conditions on a layered half-space.
In Table 3, results are tabulated for an isothermal
contact with external insulation. Constriction factors
(¥./4) are compared to those tabulated in ref. [3].
As mentioned in ref. [3], the superposition technique
provided approximately isothermal contact con-
ditions, but remarkably as seen in Table 3, the percen-
tage error between the two techniques was usually
less than 1%.

Extensive tabulated results for uniform contact
conductance with external insulation or T = 0 bound-
ary conditions can be found [1]. The models developed
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also easily allow for non-uniform contact conduc-
tance, however, these are too extensive to be presented
in the context of this paper. Similar behaviour would
be observed as in the non-uniform convection studies
conducted on the half-space in Part 1. Figures 2 and
3 illustrate results for contacts with a uniform contact
conductance, and an insulated external boundary. In
Fig. 2, the conductivity ratios are greater than 1.0,
and a relative thickness é = 1.0 was chosen for exam-
ple. This represents a coating (layer) that is conductive
relative to the substrate material. In all cases, the
constriction resistance increases with increasing con-
ductivity ratio x, and with decreasing relative thick-
ness 6. Also, along with these trends, the percentage
difference between the upper and lower bounds on the
solution increases steadily, to a maximum of 10% for
8 = 0.1, ¥ = 100, as noted in ref. [6]. Figure 3 gives
results for conductivity ratios /ess than 1.0 (5 = 1.0).

For these cases, the coating is termed resistive com-
pared to the substrate. Here we observe that the con-
striction resistance decreases with decreasing relative
thickness 8, and decreasing conductivity ratio. The
decreasing conductivity ratio essentially provides for
an improving heat sink at { = 8.

Results are shown in Figs. 4-7 for a uniform contact
conductance with external T = 0 boundary. Figures 4
and 5 consider conductivity ratios greater than 1.0,
and Figs. 6 and 7 show results for conductivity ratios
less than 1.0. We note that for conductivity ratios
greater than 1.0, the constriction resistance increases
with decreasing relative thickness, and increasing con-
ductivity ratios. For conductivity ratios less than 1.0
(a resistive layer), the constriction resistance decreases
with decreasing conductivity ratio, and decreasing
relative thickness. Different combinations of con-
ductivity ratio x and relative thickness ¢, yield a simi-
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lar constriction resistance, suggesting the possible
existence of another dimensionless quantity for the
coated half-space contacts.

7. CONCLUSIONS

The results in this work provide the necessary
asymptotic bounds for the more general layered prob-
lem of a convective external boundary with contact
conductance. The effects of Biot number on the con-
striction resistance follow similar trends to those
observed in Part 1. Further extensive results are also
given in ref. [6] for single layer boards with various
bottom surface conditions. We note too, that alter-
native integral operators may have been used to
reduce the problems to Fredholm-type integral equa-
tions. However, these would then require suitable col-
location procedures [7] for solution, and evaluation

of kernel integrals at these points. It was found that
the approach used here, whereby Fourier expansions
reduced the integrals to a system of linear algebraic
equations, was more concise and stable. The analo-
gous kernel integrals were lumped in the influence R
matrix, and efficient procedures for evaluating these
were incorporated. Use was made of the theta-func-
tion theory [8] to compute accurately the complete
elliptic integrals. Efficient series acceleration algo-
rithms [9, 10} were also implemented for evaluating
the various infinite series forms.
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RESISTANCE THERMIQUE DE CONSTRICTION AVEC DES CONDITIONS AUX
LIMITES CONVECTIVES—2. CONTACTS LAMELLAIRES EN DEMI-ESPACE

Résumé—On considére analyse thermique axisymétrique d’un contact liée & un demi-espace. La méthode

de transformation intégrale de Hankel est utilisée et des conditions aux limites convectives sont imposées

sur la surface de contact. Dans chaque cas des développements de Fourier convenables réduisent le

probléme 4 la résolution d’équations intégro-différentielles semblables a celles étudiées dans la premiére

partie pour des contacts de demi-espace. Des expressions compactes sont développées et la variation de la

résistance thermique de constriction est montrée sous une forme adimensionnelle pour un large domaine
du nombre de Biot, d’épaisseur de couche et du rapport de conductivité thermique.

DER THERMISCHE WIDERSTAND BEI KONVEKTIVEN RANDBEDINGUNGEN-—
2. KONTAKTE AN EINEM BESCHICHTETEN HALBRAUM

Zusammenfassung—Diese Arbeit beschiftigt sich mit der achsensymmetrischen thermischen Analyse des
Kontakts in einer halbunendlichen einzelnen Schicht, die ideal an einem halbunendlichen Korper anliegt.
Die Integraltransformationsmethode von Hankel wurde angewandt und konvektive Randbedingungen an
der Kontaktoberfliche angesetzt. In allen Fillen reduzieren geeignete Fourier-Entwicklungen das Problem
der Losung der Integral-Differential-Gleichungen dhnlich denen in Teil 1 fir Halbraum-Kontakte be-
trachteten. Kompakte Ausdriicke wurden entwickelt. Die Verdnderung des thermischen Widerstandes wird
in dimensionsloser Form fiir einen groBen Bereich der Biot-Zahl, der Schichtdicke und der Wir-
meleitfihigkeiten gezeigt.

TEPMHUYECKOE CONPOTHUBJIEHNE NPH CXATHH )11 KOHBEKTHUBHBIX
TPAHHUYHBIX YCJIOBUH—2. KOHTAKTHI B CJIOUCTOM ITOJIYIIPOCTPAHCTBE

Amporames—MeTtonoM uHTerpansHoro npeobpasosanns Xankels NPOBEACH OCECHMMETPHYHbIR TEILIO-
BOH aHAJIN3 KOHTAKTa Ha NOJYOECKOHEYHOM COHHHYHOM CJIOE, HACAIBHO MPHJICTAIOMWIEM K TONYIPOCT-
paHcrsy. Ha moBepXHOCThL KOHTaKTa HaJaraloTci KOHBEKTHBHBIE TDaHHYHbIE YCIOBHA. B xaxiaom
paccMaTpUBAaeMOM CIIy4ae ¢ NOMOIHNBIO COOTBETCTBYIOWEro painoxeHns Pypbe 3ajada CBOOATCH K
peltledmio HETErpo-audpepeHManbEbiX yPABHEHMH, aHANOIHYHHIX PACCMOTPEHHHKIM B NEPBOM wacTH
pabotel. [lonydennl npocThie COOTHOLIEHNS, OMNCHIBAICIINE H3IMEHEHUE TEPMHAYECKOTO CONPOTHBRIICHAR
npH cKaTHH B Ge3pa3sMepHOM BHIC Ui IUMPOKOro AMAana3OHa H3McHeHuH uucia BHo, ToMURHES Clos ¥
OTHOIICHHS TEIUIONPOBORHOCTEH.



