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Abstract-This paper is concerned with the axisymmetric thermal analysis of a contact on a semi-infinite 
single layer which is perfectly attached to a half-space. The Hankel integral transform method is employed 
and convective boundary conditions are imposed on the contact surface. In each case suitable Fourier 
expansions reduce the problem to the solution of integro-differential equations similar to those studied in 
Part 1 for half-space contacts. Compact expressions are developed and the variation of thermal constriction 
resistance is shown in non-dimensional form for a wide range of Biot numbers, layer thickness and thermal 

conductivity ratios. 

1. INTRODUCTION 

IN PART 1 of this work, the authors examined the 
variation of thermal constriction resistance for cir- 
cular contacts on a half-space, with convective 
(Robin) boundary conditions. If we attach a finite 
thickness layer to this half-space model, we obtain 
a coated surface, which may be used for enhancing 
thermal contact conductance. This was studied ex- 
perimentally in refs. [l, 21, with applications in the 
microelectronics industry. 

Analytical studies were conducted in ref. [3] using 
Hankel transform theory, however, these were restric- 
ted to isoflux and approximately isothermal contacts, 
both problems having an insulated external boundary. 
In particular, Negus et al. [3] did not solve the actual 
mixed boundary-value problem but used a linear 
superposition of known flux distributions to cir- 
cumvent mathematical difficulties. 

The aim of this work is to examine the thermal 
behaviour of layered half-space contacts with mixed 
convective boundary conditions. The integral Hankel 
transform approach will be used as outlined in Part 
1. The thermal constriction resistance [4] of these con- 
tacts is shown to vary with a dimensionless reference 
Biot number, as well as a wide range of layer thickness 
and conductivity ratios. In all cases studied, suitable 
Fourier expansions permit efficient and accurate solu- 
tions of the resulting integro-differential equations, in 
a likewise manner that was studied in Part 1. 

2. PROBLEM STATEMENT 

From Fig. 1, we note that the two temperature fields 
in regions 1 (layer) and 2 (substrate) are joined at 
[ = S, where, for perfect contact, the boundary con- 
ditions are 

!$o OT e,=o 

\ 
!f$ - Ifl(P) -Km% 

r 
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FIG. 1. Coated half-space model. 

cm, ao, 
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The term K is the thermal conductivity ratio of the 
two materials defined by K = k,/k,. 

The temperature fields in the layer and substrate 
will be denoted by the non-dimensional Hankel forms 

@r(p,i) = %J~‘{A(0exp(--51) 

+ B(5) exp (<i)1 ; PI (3) 

%(~,i) = ~~[r-‘o(r)exp(-51);Pl. (4) 

Thus, from boundary conditions (1) and (2) we can 
obtain 

A(5) = W(5) (3 
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NOMENCLATURE 

contact radius dimension 
Fourier series expansion coefficient and 
solution vector 
standard system matrix 
Hankel transformed temperature 
function 
Fourier series expansion coefficient 
coefficient matrix in external convection 
problems 
layer transformed temperature function 
non-uniform flux and convection 
distribution parameter 
Fourier series expansion coefficient 
Hankel layer transformed temperature 
function 
non-uniform flux and convection 
distribution parameter 
Legendre series expansion coefficient 
symmetric coefficient matrix 
layer transformed temperature function 
Legendre series expansion coefficient 
complete elliptic integral of the second 
kind 
Fourier transform function 
Fourier series coefficient 
symmetric coefficient matrix 
external integral equation function of p 
Legendre series expansion coefficient 
and vector 
external integral equation function of p 
convection coefficients 

Fourier series coefficient 
H,, H,, Hz dimensionless Biot numbers, 

h,a/k 
Z identity matrix 

j (X) Fourier transform function 
k, k,, k2 thermal conductivity, layer and 

substrate conductivities 

K(J) complete elliptic integral of the first 
kind 

K’(1) complementary complete elliptic 
integral of the first kind 

m,n integer constants 

*T truncation value of system of equations 
N diagonal coefficient matrix 

Pll Legendre polynomial of degree n 
q(p), q&), q. heat flux functions, uniform 

heat flux 

Q,Q* total heat flux through contact, total 
flux, Q/ak 

r radial coordinate 

r,,n layer influence matrix entries 
R influence matrix for layer problems 

RC thermal constriction resistance 
t thickness of layer in positive z-direction 

T, T, domain temperature, reference 
temperature 

u Heaviside unit step function 
W Legendre polynomial argument, 2p2- 1 
X Fourier transformed coordinate 
Z depth coordinate. 

Greek symbols 
u thermal conductivity parameter, 

(I-K)/(l+K) 
B thermal conductivity parameter, 

(1 +ic)/2iC 

Bn Fourier series expansion coefficient 

Y parameter in Lipschitz-Hankel 
integrals 

6 relative thickness, t/a 
6 %O delta function, equals unity only for 

n=O 

; 

modulus parameter in theta-functions 
dimensionless depth coordinate, z/a 

0, O,, O,, 0, temperature excess, mean 
contact temperature excess, specified 
base and contact temperature 
excesses 
layer temperature, substrate 
temperature 
angular coordinate 
conductivity ratio, k,/k, 
modulus for elliptic integrals 
general integers 
transformed radial coordinate 
constant, 3.14159265.. . 
dimensionless radial coordinate, r/a 
angular coordinate 
dimensionless constriction factor, 
4ak,&. 

Other symbols 
Abel integral operator transforms 

partial derivative operation 
Fourier cosine and sine transform 

operators 
Hankel transform of order v 
Laplacian operator in cylindrical polar 
coordinates. 

1 

where 

B(5) = - aB exp (--2XP(5) (6) Similarly as in Part 1, we will define the thermal 
constriction resistance of the circular contact on the 
layered half-space to be 

(7) R, =01, 
Q 

(8) 
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where the mean contact temperature rise alo and 
total heat flux over the contact, Q, are defined in 
dimensional and non-dimensional coordinates as 

a,, = --& 
s 

00,(r,0)2nrdr 
0 

= 2 s kdWp 
0 

a 
Q=- aZ s a@ I (r, 0) 2xr dr 

(11) 
0 

= -2nk,a 
s 

‘a@,o,O) 
-PG. 

a( 
(12) 

0 

Again we will present results in terms of the dimen- 
sionless thermal constriction resistance factor 

‘PC = 4ak,&. (13) 

We will consider two general problem types with 
mixed convective boundary conditions. 

Case (A) : contact conductance on the internal @ < 1) 
region with external (p > 1) insulation 

ao 
--H,(p)@= -H,(p)@,, p-c 1 x (14) 

ao 
r=O’ p’l. (15) 

Case (B) : contact conductance on the internal (p < 1) 
region with external @ > 1) T = 0 condition 

ao 
--H,(p)@= --H,(p)@,, p<l 
a( 

(16) 

ao,_ 
al - 

0, p>l. 

Surface conditions are unmixed, and therefore the 
solution procedure is straightforward, that is 

J, (5) 

Using equations (5) and (6) and incorporating the 
binomial theorem to convert the quotient into a con- 
vergent series, after some manipulation we may show 
that 

A(r)+B(l) = qoy 
x 1+2 f (-l)“a”exp(-2p&?) 

[ 
(21) 

/l=I 1 
and hence write 

@,(P.O) = 40 [S m JI (0 
o r Jo(b) d5 

+2 F (-l)“a” 
m e-2Pse 

. (22) 
p=L s 0 

5 J, (8 Jo(b) d5 1 
The mean contact temperature a,, and total heat flux 
Q are now easily evaluated, and we may obtain the 
dimensionless constriction factor based on the ther- 
mal conductivity k , of the layer 

J:(t) dt. 

(23) 

o=o, p>l. (17) This result was also obtained by Negus et al. [3], who 

Using forms (3)-(6), we will be able to solve the mixed 
surface boundary conditions in terms of having only 
one unknown transformed temperature, D(r), in the 
integral solution. The Hankel transforms used are as 
outlined in Part 1 of this paper. Additionally we will 
be concerned here with the layer ratios 6 and K. 

3. LIMITING CASES 

Limiting solutions will also be required here to 
verify the upper and lower bounds for the convective 
boundary conditions in equations (14)-( 17). These 
are similar to the forms given in Part 1, except that 
they will require the necessary approximations to the 
integral equations, and thus are generally more 
involved than the half-space models only. Three cases 
are discussed here, not including varying-flux 
contacts, which could be similarly developed as was 
done for the half-space in Part 1. 

Case (i) 

ao, -= 
al 

-40. P<l 

approximated the infinite integral for a specified range 
~6 2 0.5, but evaluated it numerically for @ < 0.5. 
Fortunately, we note that this is a Lipschitz-Hankel 
type integral, which may be explicitly reduced solely 
in terms of complete elliptic integrals, as discussed by 
ref. [5]. A summary of these is given in ref. [6], and 
we may obtain 

where the modulus 1, is defined as 

1 = (l+(#-“2. 

Case (ii) 

(25) 

ao, -= 
a( 

-409 P < 1 (26) 

o,=o, p>l. 

Using equations (5) and (6), and letting 

(27) 

WIT 31:9-I 
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C(t;) = O(<)(l -.e-26’) (28) 

our Hankel-form boundary conditions become 

z”,]G(5)C(U; PI = $ P < 1 (2% 

.@0[5-‘C(5); PI = 0, p > 1. (30) 

The term G(t) is defined by 

(31) 

=1+2f & e- *tibc (32) 
p= I 

= 1+s(5). (33) 

Due to condition (30), we may employ the Abel 
integral operator d ; ’ to obtain 

TJC({); x] = (:n)“*f(X)U(X-1). (34) 

As in Part 1, we next use two simultaneous Fourier 
expansions for the unknown variable f(x) 

f(x) = F(0) = f a. cos (2n + 1)0, 0 < 13 < x/2 
“=O 

(35) 

sin M(e) = f b, cos (2n + ije, 0 < e < 42 (36) 
“=a 

and the representations x = cos0, p = COST. Now 
with these expansions, we can note that 

s 

I 
C(r) = f(x) sin TX dx (37) 

0 

=zoanr2 cos (2n+ 1)esin (t;cos e) sin ed0 (38) 

= ;“to&(- 1)“Jh.t r(5). (39) 

The method now follows similar lines as described for 
the half-space analysis, that is, to reduce the system 
to a single integro-differential equation. We choose 
the Fourier sine transform of the g(t)C(t) function 
in this case to be represented by 

~t,]s(5)C(O ; xl = z” 
0 

112 m 
1 c,cos(2n+i)e (40) 
?I=0 

7l 0 
I/* 

= - 
2 .i 6). (41) 

The c, are now related to the b, (for easiest analytical 
manipulation), by 

m 
c, = 1 r,..b, 

WI=0 
(42) 

where, we can show that 

rm.n =&l)” oms(S)Jti+&) 
s 

X a sin (5 cos 4) cos (2n + 1)4 d4 d5 (43) 

= 4(-l)m+n 2 & 
/I= 1 

s 

m 

X e~2'6*J2m+L(5)J2n+1(5)d5. (44 
0 

After further manipulation with equation (29), we 
may obtain the infinite system of linear equations, in 
matrix form 

{VI + [NPlbh = 9. (45) 

where now, the right-hand side vector becomes 

go=Lqo; gn=O,n= 1,2 )... 
xB 

(46) 

Now, with the form of equation (39) we note that 
with equation (28) the temperature solution on the 
top surface becomes 

@,(P,O) = 8Jfo[5-‘c(O;Pl (47) 

= ;P E M-1)” J2n+,(Wo(<p)d5. 
n-0 

(48) 

After further integrations, for a uniform flux qo, we 

may obtain 

6,, = ;/lbo, YC = 2:. (49) 

Results for this case are given in Tables 1 and 2. 

Table 1. Isoflux contact with T = 0 external; 
611 

Conductivity Thickness Constriction 
ratio, ratio, factor, 

)c = k,/kz 6 = t/a Y’, = 4ak,R, 

0.01 0.01 2.0452 x 1O-2 
0.10 0.01 7.4119 x 1o-2 
0.50 0.01 2.8797 x 10-l 
0.75 0.01 4.1574 x 10-l 
1.25 0.01 6.6225 x IO-’ 
2.00 0.01 1.0132 x 10’ 

10.00 0.01 3.8699 x 10’ 
100.00 0.01 1.2122 x 10’ 

0.01 0.10 1.2471 x 10-l 
0.10 0.10 1.8277 x 10-l 
0.50 0.10 3.6852 x 10-l 
0.75 0.10 4.6028 x 10-l 
1.25 0.10 6.1132 x IO-’ 
2.00 0.10 7.8389 x IO-’ 

10.00 0.10 1.4322 x 10’ 
100.00 0.10 1.8300 x 10” 

0.01 0.50 3.9713 X 10-l 
0.10 0.50 4.2417 x 10-l 
0.50 0.50 4.9453 x 10-l 
0.75 0.50 5.2081 x 10-l 
1.25 0.50 5.5558 x 10-l 
2.00 0.50 5.8608 x 10-l 

10.00 0.50 6.5381 x 10-l 
100.00 0.50 6.7702 x 10-l 
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Table 2. Isoflux contact with T = 0 external ; 
621 

Conductivity Relative Constriction 
ratio, thickness, factor, 

K = k,/k2 6 = t/a Y’, = 4ak& 

0.01 1.00 4.9863 x 10-l 
0.10 1.00 5.0702 x 10-l 
0.50 1.00 5.2785 x 10-l 
0.75 1 .oo 5.3513 x 10-l 
1.25 1 .oo 5.4435 x 10-l 
2.00 1 .oo 5.5205 x IO-’ 

10.00 1.00 5.6794 x 10-l 
100.00 1.00 5.7303 x 10-l 

0.01 2.00 5.3304 x 10-l 
0.10 2.00 5.3452 x 10-l 
0.50 2.00 5.3820 x IO-’ 
0.75 2.00 5.3947 x 10-l 
1.25 2.00 5.4106 x IO-’ 
2.00 2.00 5.4238 x 10-l 

10.00 2.00 5.4505 x 10-l 
100.00 2.00 5.4590 x 10-l 

0.01 10.00 5.4031 x 10-l 
0.10 10.00 5.4033 x 10-l 
0.50 10.00 5.4036 x 10-l 
0.75 10.00 5.4037 x 10-l 
1.25 10.00 5.4039 x 10-l 
2.00 10.00 5.4040 x 10-l 

10.00 10.00 5.4042 x IO-’ 
100.00 10.00 5.4043 x 10-l 

0.01 100.00 5.4038 x IO-’ 
100.00 100.00 5.4038 x 10-l 

Case (iii) 

01 =oo, p< 1 

ao, 
ay=O* p’l. 

By defining here 

C(r) = D(c)(1+Gle-2se) (52) 

then in Hankel form, equations (50) and (5 1) become 

ti”o[~-‘G(OC(U; PI = O” 
B’ 

P < 1 (53) 

*K(r); PI = 0, P > 1. (54) 

The G(c) is in this case given by 

(55) 

= I+2 f (-l)Pde-2ti~ (56) 
p=1 

= I+s(5). (57) 

This time, we employ the representation 

EM; xl = (:~)“2fww1 -4 (58) 

where U is the Heaviside unit function, defined by 

U(l-x) = 1, x < 1 

=o, x>l (59) 

and the expansions 

f(x) = F(B) = f a, sin (2n+ l)e, 0 < 0 < n/2 
n-0 

(60) 

sin BF(8) = f b. sin (2n + 1)0, 0 < f3 < n/2. 
"S-0 

(61) 

With these simultaneous Fourier expansions for f(x), 
we may show that 

(62) 

~",[s(W(t?; Xl = 0 ; 
112 co 

“~on,(2n+ IN- 1) 

X ~dt)costxdt (63) 

71 l/2 

=- 0 j(x). 2 (f-9 

Now, with x = cost?, as before, we use the rep- 
resentation 

sin e.qe) = f C, sin (2n + i)e 
It-0 

(65) 

and then the integro-differential equation will reduce 
to the system of equations 

b, +cn = 9.. (66) 

The b, are related to the a. by the d,,,, in the Appendix 
(Part I), and the c. are related to the a, by the sym- 
metric r,,,+ given by 

rwl =;(2m+l)(-1)” mg(C)v 
I 0 

X s “cos(~cos~)sin(2n+l)~sin~d~d~ (67) 
0 

= 4(2m+ 1)(2n+ l)(- l)m+” O3 fl;, a?- 1)” 

X 

s 

we-WC 

---rJzm+,(OJ2n+~Wdt. (68) 
0 5 

The matrix system hence becomes 

UDI + [W = 9 (69) 

and the g” are as defined for Case (ii) by replacing q. 
with Oo. To evaluate the heat flux, we note that 

ao 
ay = -B&o[C(tJ ; PI 

(71) 

To find Q, we use equation (12), and thus obtain 



1878 T. F. LEMCZYK and M. M. YOVANOVICH 

2 

Q = ‘c /.Iaka,, 
800 

2 
YC = 7 

pn a,’ 
(72) 

Again we included the effects of the thermal con- 
ductivity ratio K into constants tl and fl. We note from 
equation (7), that CI -+ 1 as K becomes very small. 
In terms of material conductivities, as the substrate 
conductivity kz becomes very large compared to the 
layer conductivity k,, the substrate behaves like a 
thermal sink, with 0 = 0 on [ = 6. 

Negus et al. [3] approximated condition (50) by 
superposition of two flux distributions ; the uniform 
flux in Case (i), and an equivalent isothermal flux, that 
is, the flux resulting from an isothermal contact on a 
half-space (Part l), the solution of which is straight- 
forward. Comparison is made, between the exact solu- 
tion to the mixed boundary value problem derived 
here and the solution from ref. [3], in Table 3. 

4. CONTACT CONDUCTANCE, CASE (A) 

The boundary conditions for this problem are as 
stated in equations (14) and (15), and with the forms 
defined in equations (3) and (4) we may write our 
Hankel-form boundary conditions as 

~“o[C(<) ; PI+H,(P)~o[S~‘G(~)C(~); PI 

= -H,(p)$ P< 1 (73) 

=.@o[C(t7; PI = 0, P > 1. (74) 

In the above, C(c) is defined by equation (52) and 
G(l) is given by equation (55). Next, we use equation 
(58) to reduce to a single integro-differential equation 
along with expansions (60) and (61). Now with 

g(l) = 2 f (- l)%~@e-*~~~ 
p=L 

(75) 

then we have for p < 1 

+H,(p)~~[5-‘s(5)C(5);Pl = -W$‘. (76) 

The function C(r) may be given by equation (62), and 
thus, with the forms of equations (63)-(65) we can 
obtain similarly a system of equations, for uniform 

H1 

a,+H,(2n+l)-‘(b,+c,,) = g, 

and in matrix notation 

(77) 

Wl+H,WlWl+PWh = gn. (78) 

The c, are related to the a, through equation (42) by 
the r,,,” given by equation (68). The b, are related to 
the a, as in equation (66) and the gn are simply given 

by 

6 = t/a K = k,/k2 
y’,/4 y,/4 

Negus et al. [3] equation (75) 

Percentage 
difference 

(%) 

0.01 0.01 5.830 x lo-’ 5.821 x 1O-3 -0.15 
0.01 0.10 2.875 x 1O-2 2.893 x 1O-2 0.62 
0.01 0.50 1.279 x 10-l 1.284x 10-l 0.37 
0.01 2.00 4.893 x 10-l 4.873 x 10-l -0.41 
0.01 10.00 2.220 x loo 2.179 x 10’ - 1.90 
0.01 100.00 1.346 x IO’ 1.161 x 10’ - 15.90 
0.10 0.01 3.206 x lo-’ 3.180 x 1O-2 -0.83 
0.10 0.10 5.436 x lo-* 5.422 x lo-* -0.26 
0.10 0.50 1.463 x 10-l 1.465 x 10-l 0.10 
0.10 2.00 4.327 x lo-’ 4.323 x 10-l -0.09 
0.10 10.00 1.368 x 10’ 1.361 x 10” - 0.05 
0.10 100.00 4.109 x lo0 4.095 x IO0 -0.36 
1.00 0.01 1.581 x 10-l 1.587 x 10-l 0.36 
1.00 0.10 1.692 x 10-l 1.698 x 10-l 0.34 
1.00 0.50 2.105 x 10-l 2.112x 10-l 0.31 
1 .oo 2.00 3.076 x 10-l 3.085 x 10-l 0.29 
1.00 10.00 5.021 x 10-l 5.032 x 10-l 0.22 
1 .oo 100.00 8.497 x 10-l 8.510 x 10-l 0.16 

10.00 0.01 2.392 x 10-l 2.421 x 10-l 1.20 
10.00 0.10 2.405 x 10-l 2.435 x 10-l 1.22 
10.00 0.50 2.454 x 10-l 2.484 x 10-l 1.20 
10.00 2.00 2.564 x 10-l 2.594 x 10-l 1.16 
10.00 10.00 2.771 x 10-l 2.801 x 10-l 1.06 
10.00 100.00 3.123 x 10-l 3.154x 10-l 0.97 

100.00 0.01 2.489 x 10-l 2.519 x 10-l 1.18 
100.00 100.00 2.562 x 10-l 2.592 x 10-l 1.16 

Table 3. Isothermal contact with external insulation ; verifications 
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2 H,& 
go = ; ---; g,=O,n= 1,2,... 

B 
(79) 

If we had a non-unz~rm symmetric contact con- 
ductance as defined in equation (36) of Part 1, then 
in a similar manner, our matrix system would become 

1_H,~[Nl[Gl([D’]+[R’]) a = g. (80) 

The [D’] and [R’] are again rectung~lurized versions 
of [D] and [RR] as discussed in Part 1. The gn in this 
case would be as given in Part 1, and dividing each by 
the factor /I. For either a uniform or non-uniform 
contact conductance, evaluation of the mean contact 
temperature and total heat flux remains the same. 
Thus we proceed 

We note that we may also represent C(r) in terms of 

6, by 

C(t) = 2 bn 
=I2 s sin (2~ + I)@ cos (c cos #) dB 

n=O 0 
(83) 

and thus 

x015-‘C(S); PI = ij: b, 
s 

mJo(S~) 
n=O 0 

n/2 
X I sin (2n + I)6 cos (c cos 0) d6 dr. (84) 

0 

To evaluate o,, this form is easify reducible, and thus 

(!& =/I ;bo +; E 4(-1)“+‘(2~+1)(2n+l) 
m-0 

@xc = $ bo + 2 zz,r,,o 1 (86) 
tI=O 

where r,,. are the first row entries of equation (68) in 
matrix [RI, which are evaluated beforehand. The total 
heat flux Q will again be given by equation (12), and 
thus we obtain the simple forms 

L a0 _I 

We note that when the contact conductance is 
uniform, then as in Part 1, we can express the solution 
for the mean contact temperature in terms of the much 
simpler expression for the total heat flux, equation 
(87). Thus we note from Part 1, for uniform contact 
conductance only 

where Q* 3 Q/ak. 

5. CONTACT CONDUCTANCE, CASE (B) 

Boundary conditions (16) and (17), may be cast in 
Nankel form as 

= -H,@)$ p< 1 (89) 

*or’W,; PI = 0, P > 1 wo 

where C(i;) is denoted by equation (28), and G(t) by 
equation (31). We next choose representation (34) 
and expansions (35) and (36), and analogously we find 
our system of equations, for a unifom conductance 
coefficient, to be 

~~Il+~~l~~l~~~~~I~~l~~~ = a,. (91) 

The dm,a, r,,,,# entries are respectively given by equation 
(49) of Part 1, and (43), and the gn by equation (79). 
For a non-uniform symmetric conductance coefficient 
of a form similar to equation (36) of Part 1, the system 
of equations we obtain are 

+H, C[N][G][D'] 
2 

a, = gn. (92) 

The entries of [G] are again as defined for equation 
(80) (see also Part l), with [D’] again being the rectan- 
gularized version of [D], and the gn would again be 
given as in the previous section. For either a uniform 
or non-uniform contact conductance, we obtain for 
the mean contact temperature and total heat flux 

2 

a,, = fj?bo, Q = :,ak a, + f b,r,,o 1 . (93) 
PI=0 

Again, the r”,. are the first row entries defined by 
equation (43). Thus, our expression for the dimen- 
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FIG. 2. Constriction factor vs Biot number ; K > 1, b = 1 .O external insulated boundary, 

sionless constriction factor becomes after some 
manipulation 

(94) 

II=0 

Again, for a uniform contact conductance, we may use 
the form of equation (88) for simplification, and thus 
obtain 

y,=4+= Who 

’ H,(O,- ;/?b,). (95) 

6. PRESENTATION OF RESULTS 

An explicit expression (24), was derived for Case 
(i), overcoming the previous resort [3] to numerical 

integration. Tables 1 and 2 provide the variation of 
constriction factor with relative thickness and con- 
ductivity ratios, for an isoflux contact with T = 0 
external boundary. Thus, along with the results shown 
in ref. [3], these respectively determine the upper and 
lower bounds for an isoflux contact with external con- 
vection boundary conditions on a layered half-space. 
In Table 3, results are tabulated for an isothermal 
contact with external insulation. Constriction factors 
(YJ4) are compared to those tabulated in ref. [3]. 
As mentioned in ref. [3], the superposition technique 
provided approximately isothermal contact con- 
ditions, but remarkably as seen in Table 3, the percen- 
tage error between the two techniques was usually 
less than 1%. 

Extensive tabulated results for uniform contact 
conductance with external insulation or T = 0 bound- 
ary conditions can be found [ 11. The models developed 

--_ 

.6 s = k&a 
___- .Ol 
--_ .10 
-_- .a0 

6 -1.0 

1o-4 lo+ 1o-2 10-l loo 10’ lo2 lo3 lo4 lo5 

MOT NUMBER = ha/k 
FIG. 3. Constriction factor vs Biot number; K i 1, S = 1.0 external insulated boundary. 
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BIOT NUMBER = ha/k 

FIG. 4. Constriction factor vs Biot number; K > 1,s = 1 .O external 2’ = 0 boundary. 

also easily allow for non-uniform contact conduc- 
tance, however, these are too extensive to be presented 
in the context of this paper. Similar behaviour would 
be observed as in the non-uniform convection studies 
conducted on the half-space in Part I. Figures 2 and 
3 illustrate results for contacts with a ~~z~r~ contact 
conductance, and an insulated external boundary. In 
Fig. 2, the conductivity ratios are greater than 1.0, 
and a relative thickness 6 = 1 .O was chosen for exam- 
ple. This represents a coating (layer) that is conductive 
relative to the substrate material. In all cases, the 
constriction resistance increases with increasirzg con- 
ductivity ratio K, and with decreasing relative thick- 
ness 6. Also, along with these trends, the percentage 
difference between the upper and lower bounds on the 
solution increases steadily, to a maximum of 10% for 
6 = 0.1, of = 100, as noted in ref. [6]. Figure 3 gives 
results for conductivity ratios less than 1.0 (8 = 1.0). 

For these cases, the coating is termed resistive com- 
pared to the substrate. Here we observe that the con- 
striction resistance decreases with decreasing relative 
thickness 6, and decreasing conductivity ratio. The 
decreasing conductivity ratio essentiatly provides for 
an improving heat sink at < = 6. 

Results are shown in Figs. 47 for a uniform contact 
conductance with external T = 0 boundary. Figures 4 
and 5 consider conductivity ratios greater than 1.0, 
and Figs. 6 and 7 show results for conductivity ratios 
less than 1.0. We note that for conductivity ratios 
greater than 1.0, the constriction resistance increases 
with decreasing relative thickness, and increasing con- 
ductivity ratios. For conductivity ratios less than 1.0 
(a resistive layer), the constriction resistance decreases 
with decreasing conductivity ratio, and decreasing 
relative thickness. Different combinations of con- 
ductivity ratio tc and relative thickness 6, yield a simi- 

i. 

1o-4 lo+ 1o-2 lo-' loo lOi IO2 lo3 lo4 IO5 

BIOT NUMBER = ha/k 
FIG. 5. Constriction factor vs Biot number; K > I, S = 0.1 external T= 0 boundary. 
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BIOT NUMBER = ha/k 
FIG. 6. Constriction factor vs Biot number; K < 1, S = 1.0 external T = 0 boundary. 

= = h/h 
6 - .lO ---- .01 

- .7!i 

0’ B&t 
1o-4 Io-3 Io-2 10-l IO0 IO1 IO2 IO3 lo4 IO5 

BIOT NUMBER = ha/k 

FIG. 7. Constriction factor vs Biot number ; ti -c 1, S = 0.1 external T = 0 boundary. 

lur constriction resistance, suggesting the possible 

existence of another dimensionless quantity for the 

coated half-space contacts. 

7. CONCLUSIONS 

The results in this work provide the necessary 
asymptotic bounds for the more general layered prob- 
lem of a convective external boundary with contact 
conductance. The effects of Biot number on the con- 
striction resistance follow similar trends to those 
observed in Part 1. Further extensive results are also 
given in ref. [6] for single layer boards with various 
bottom surface conditions. We note too, that alter- 
native integral operators may have been used to 
reduce the problems to Fredholm-type integral equa- 
tions. However, these would then require suitable col- 
location procedures [7] for solution, and evaluation 

of kernel integrals at these points. It was found that 
the approach used here, whereby Fourier expansions 
reduced the integrals to a system of linear algebraic 
equations, was more concise and stable. The analo- 
gous kernel integrals were lumped in the influence R 
matrix, and efficient procedures for evaluating these 
were incorporated. Use was made of the theta-func- 
tion theory [8] to compute accurately the complete 
elliptic integrals. Efficient series acceleration algo- 
rithms [9, lo] were also implemented for evaluating 
the various infinite series forms. 
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RESISTANCE THERMIQUE DE CONSTRICTION AVEC DES CONDITIONS AUX 
LIMITES CONVECTIVES-2. CONTACTS LAMELLAIRES EN DEMI-ESPACE 

R&m&--On considere l’analyse thermique axisymetrique dun contact like I un demi-espace. La methode 
de transformation intbgrale de Hankel est utilisee et des conditions aux limites convectives sont imposdes 
sur la surface de contact. Dans chaque cas des diveloppements de Fourier convenables rtduisent le 
probleme a la resolution d’equations integro-differentielles semblables $ celles Btudiees dans la premiere 
partie pour des contacts de demi-espace. Des expressions compactes sont developpees et la variation de la 
resistance thermique de constriction est montree sous une forme adimensionnelle pour un large domaine 

du nombre de Biot,~~paisseurdecouche et du rapport deconduc~vit~the~ique. 

DER THERMISCHE WIDERSTAND BE1 KONVEKTIVEN RANDBEDINGUNGEN- 
2. KONTAKTE AN EINEM BESCHICHTETEN HALBRAUM 

Zwammenfassung-Diese Arbeit beschaftigt sich mit der achsensymmetrischen thermischen Analyse des 
Kontakts in einer halbunendlichen einzelnen Schicht, die ideal an einem halbunendlichen K&per anliegt. 
Die Integraltransformationsmethode von Hankel wurde angewandt und konvektive Randbedingungen an 
der Kontaktoberflache angesetzt. In allen FHllen reduzieren geeignete Fourier-Entwicklungen das Problem 
der Lijsung der Integral-Differential-Gleichungen lhnlich denen in Teil 1 fur Halbraum-Kontakte be- 
trachteten. Kompakte Ausdriicke wurden entwickelt. Die Vemnderung des therm&hen Widerstandes wird 
in dimensionsloser Form fur einen groben Bereich der Biot-Zahl, der Schi~htdicke und der War- 

meleitf~higkeiten gezeigt. 

TEPMM9ECKOE COIIPOTMBJIEHHE HP&I C>KATHH &JDl KOHBEKTBBHbIX 
rPAH~~HbIX YCJIOBHH-2. KOHTAKTbI B CJTOMCTOM ~O~Yn~~AH~BE 

AIIEOT~UHS-M~TO~OM wHTerpanbHoron~6pa3oBaHanXaHrenR npoeenen ocec~MweTpwmb&Tenno- 

eoii anann ROHTaKTa Ha nony6ec~oHe9Hon4 eLUiHH'iHOM cnoe,uneanbHo npmeraxowehl K nonynpocT- 

paHCTBy. Ha nOBepXHOCTb KOHTaKTa HUIUWoTCX KOHBeKTHBHbIe rpaHH'lHbIe yCJIOBHX. B KamOM 

paccMaTpIisaeMoh+ cnyvae c nohfowbm cooTBercTBymwer0 pasaoweawn @ypbe 3wasa c~omf~cx K 
~UIeHHIO SiHTerpO-JUi~HIWJIbHbIX ypaBHeH&, aHEUIOrHYHbIX paCCMOT~HHbIM B IIepBOti QWrEi 

pa6oTbr. IIonyyeHhi npocrbre cooTHo~eH~K,o~c~~~e H3MeHeHxe Tep~q~Koro ~n~T~~e~K 

npH CXaTHH B &3pa3MQ,KOM BNBe&IIX ~~~KOrO~~a3OHa ~~eHeH~ ~C~a~HO,TO~H~C~OKH 

OTHOmeHH8TeI'LVOnpOBOiltiOCTeii. 


